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INTRODUCTION

Future exascale systems will be composed by millions
of heterogeneous components that will be dynamically
activated and deactivated as result of contingent condi-
tions, such as opportunities for power/energy efficiency,
poor reliability, task/data movement and/or re-allocation
of hardware resources. In this context, understanding
whether an applications is executing at the maximum
expected speed and efficiently performing computation
is a hard task. Moreover, each individual component
may operate in different states (DVFS, number of active
cores/hardware threads, availability of memory), which
further increases the complexity of efficiently managing
system’s resources and may lead to sub-optimal per-
formance or even performance degradation if not well
guided.

The programmer could theoretically provide low-level
information (when and which core to power off, where to
allocate a particular data structure) to guide the system’s
actions but this would considerably increase the com-
plexity of writing exascale applications. More impor-
tantly, some of the information, such as the allocation of
global data structures, are not directly under the control
of the programmer but are determined by the runtime
system [1]. Finally, this effort may have to be repeated
for each application/kernel development and whenever
external conditions (new system configuration, different
input set) change the characteristics of the application.

A self-aware, automated system software (operating
and runtime system) has the potentiality of extracting
the necessary information from the application execution
and the current system conditions. Solving the problem
at OS/RT level has a direct impact on programmers’
productivity: first the programmer need not have to deal
with the system complexity of scheduling a large number
of tasks, dealing with faults and efficiently managing
hardware resources. Second, an automated system can
analyze different parameters, some of which are only
known at run time and depends on the particular system
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and execution environment. As we expect the number
of this parameter be large, a manual approach would
not be feasible and would probably result in sub-optimal
performance and efficiency.

However, as we move from the application to lower
levels of the software stack we lose behavioral knowl-
edge that can be put to use in optimizing performance
and power/energy consumption without unwanted im-
pacts on performance. The runtime system can benefit
from utilizing quantitative and predictive application
models [2]–[6] to make intelligent decisions, for instance
when considering data movement, data replication and
computation migration, and will utilize tools provided
by the hardware to route power to where it can be most
effectively utilized through throttling and power gating.

Figure 1 shows the main components involved in the
design of a self-aware automated system software stack.
Here follows a brief description of each of them:

a) Runtime system (RT): Runtime software em-
ployed to manage execution at exascale must be
equipped with tools (i.e., models) that are able to guide
dynamic decision-making policies concerning when data
migrations are beneficial and weigh the cost of move-
ment against possible alternatives.



b) System Monitor Interface (SMI): The SMI de-
couples OS and the RT with the main goal of increasing
portability. Together with the OS, SMI hides the low-
level architecture details enabling the porting of RTs on
different machines that possibly run different operating
systems. Current OS do not export the level of runtime
information that required by dynamic models to make
the correct decisions. For example, Unix-base operating
systems export system information (/sys) and process
information (/proc) but do not provide information on
the level of achieved performance (percentage of peak
performance), efficiency (power/energy consumption per
computation task) or the quality of the results (number
of faults, correctable/uncorrectable errors).

c) Operating System (OS): Current OS used in
HPC are usually disconnected form the RT systems and
may take sub-optimal decision. For example, memory is
allocated according to a flat model, with the only excep-
tion being NUMA domains (numactl), without con-
sidering where computation is assigned or where other
global data structures are allocated. Only minimal sup-
port is provided for scheduling tasks on cores/hardware
threads that share internal resources. Finally, resources
such as accelerators or memory on-device are considered
second-class resources and are not directly managed. OS
designed for exascale system should provide an higher
level of flexibility and tighten the integration with RT.
This can be accomplished by 1) providing (through
SMI) the required information with low-overhead, and
2) allowing RT to specify extra QoS parameters when
allocating or managing resources (on which memory de-
vice a global data structure should be allocated, whether
the memory should be contiguous, the desired level of
reliability or power consumption of a computation task).

d) Hardware (HW): We expect exascale architec-
tures to be more flexible than current ones. In particular,
we expect future hardware components will allow fast
transition among low-power states and the ability to
dynamically allocate some of the hardware resources on
demand. More importantly, we expect those performance
and power/energy capabilities be exposed to the system
software (software-controlled), similar to IBM POWER
hardware thread priority [7].

CHALLENGES ADDRESSED

Self-aware OS/RT systems have the ability to adapt
to the current situation and react to runtime events.
The increased OS flexibility will provide the RT with
mechanisms to efficiently specify how to allocate hard-
ware resources. Both these characteristics have direct
impact on the most important exascale challenges, such
as performance, power/energy, locality and reliability.

MATURITY

There has been previous work on dynamic alloca-
tion of resources according to application’s character-
istics [5], [6], [8], in field of performance modeling
of parallel applications on large machines [4], [9], [10]
and efficient communication runtime systems [11]–[13].
These systems, however, lack the OS/RT integration that
is necessary to meet the efficiency levels required by
exascale systems.

UNIQUENESS AND NOVELTY

Exascale systems pose new challenges that are unique
to the exascale era (heterogeneity, large number of
components, power constraints) and that make previous
solutions unable to meet exascale requirements. In par-
ticular, current OSs/RTs do not provide the required flex-
ibility and adaptiveness and novel models and modeling
techniques should be developed. Proposed solutions [4]–
[6], [13] address the problem at OS, RT or architecture
level. While this has been proved enough for petascale
systems, exascale constraints (40 GFLOPS/Watt) require
a much tighten integration of all system’s components.

APPLICABILITY

An automatic self-aware system will allow users to
explore possible trade-offs among performance, power
and reliability and alternative design choices that would
be to expensive to explore manually. The output of
these exploration studies can be used as feedback to
other areas, including programming models, computer
architectures and algorithms.

EFFORT

The development of a self-aware OS/Runtime systems
is fundamental for the development of other system
components, such as the programming model runtime.
As such, the effort should be developed in the early
part of the exascale roadmap. Given the complexity of
tackling the whole system software stack and the variety
of design choices, several coordinated approaches can
be performed in parallel in order to achieve prototypes
development in the early part of the roadmap.
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